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Abstract Changing climate in northern regions is causing permafrost to thaw with major implications for
the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of
sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (RHgC) combined
with maps of soil carbon. We measured a median STHg of 43 ± 30 ng Hg g soil�1 and a median RHgC of
1.6 ± 0.9 μg Hg g C�1, consistent with published results of STHg for tundra soils and 11,000 measurements
from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern
Hemisphere permafrost regions contain 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is frozen in permafrost.
Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere
combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates
greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions
in the global Hg cycle.

Plain Language Summary Researchers estimate the amount of natural mercury stored in
perennially frozen soils (permafrost) in the Northern Hemisphere. Permafrost regions contain twice as
much mercury as the rest of all soils, the atmosphere, and ocean combined.

1. Introduction

Over thousands of years, sedimentation buried mercury (Hg) bound to organic material and froze it into the
permafrost (Obrist et al., 2017). Permafrost is soil at or below 0°C for at least two consecutive years. The
active layer is the surface soil layer on top of the permafrost that thaws in summer and refreezes in winter
(Figure S1 in the supporting information). Hg deposits onto the soil surface from the atmosphere, where it
bonds with organic matter in the active layer. Microbial decay then consumes the organic matter, releasing
the Hg (Smith-Downey et al., 2010). At the same time, sedimentation slowly increases soil depth such that
organic matter at the bottom of the active layer becomes frozen into permafrost. The organic matter con-
sists almost entirely of plant roots, and, once frozen, microbial decay effectively ceases, locking the Hg into
the permafrost. However, permafrost has begun to thaw under a changing climate (Hinzman et al., 2005;
Romanovsky et al., 2008; Smith et al., 2010). Once the permafrost and associated organic matter thaws,
microbial decay will resume and release Hg to the environment, potentially impacting the Arctic Hg balance,
aquatic resources, and human health (Dunlap et al., 2007; Jonsson et al., 2017; Obrist et al., 2017; USGS Fact
Sheet, https://www2.usgs.gov/themes/factsheet/146-00/, 2016). Model projections estimate a 30–99%
reduction in the area of Northern Hemisphere permafrost by 2100, assuming anthropogenic greenhouse
gases emissions continue at current rates (Koven et al., 2013). In a novel approach, we make the first-ever
estimate of the storage of Hg in the Northern Hemisphere permafrost soils using empirical relationships
based on in situ measurements of sediment total mercury (STHg) combined with published maps of soil
organic carbon (Hugelius, Tarnocai, et al., 2013; Hugelius, Bockheim, et al., 2013).

SCHUSTER ET AL. PERMAFROST STORES A GLOBALLY SIGNIFICANT AMOUNT OF MERCURY 1463

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL075571

Key Points:
• Permafrost stores a significant amount
of mercury

• Permafrost regions store twice as
much mercury as all other soils, the
ocean, and atmosphere combined

• Thawing permafrost in a warming
climate may release mercury to the
environment

Supporting Information:
• Supporting Information S1
• Data Set S1
• Data Set S2

Correspondence to:
P. F. Schuster,
pschuste@usgs.gov

Citation:
Schuster, P. F., Schaefer, K. M., Aiken,
G. R., Antweiler, R. C., Dewild, J. F.,
Gryziec, J. D., … Zhang, T. (2018).
Permafrost stores a globally significant
amount of mercury. Geophysical
Research Letters, 45, 1463–1471. https://
doi.org/10.1002/2017GL075571

Received 27 SEP 2017
Accepted 10 JAN 2018
Published online 5 FEB 2018
Corrected 20 JUN 2018

This article was corrected on 20 JUN
2018. See the end of the full text for
details.

©2018. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0002-8314-1372
http://orcid.org/0000-0002-5444-9917
http://orcid.org/0000-0001-8454-0984
http://orcid.org/0000-0001-5652-6034
http://orcid.org/0000-0003-4097-2798
http://orcid.org/0000-0002-8355-5591
http://orcid.org/0000-0002-8096-1594
http://orcid.org/0000-0002-8310-3261
http://orcid.org/0000-0003-1964-5020
http://orcid.org/0000-0002-9581-1337
http://orcid.org/0000-0001-5933-4978
http://orcid.org/0000-0003-0630-9423
http://orcid.org/0000-0002-7515-3533
http://orcid.org/0000-0002-8251-4659
http://orcid.org/0000-0002-6400-0590
http://orcid.org/0000-0002-6168-0156
https://www2.usgs.gov/themes/factsheet/146-00/
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
http://dx.doi.org/10.1002/2017GL075571
mailto:pschuste@usgs.gov
https://doi.org/10.1002/2017GL075571
https://doi.org/10.1002/2017GL075571


2. Site Descriptions and Methods

To estimate Hg in permafrost regions, we drilled 13 permafrost soil cores of variable lengths in Alaska along a
~500 km north-south transect representing a broad array of characteristics and ages typical of circumpolar
permafrost soils (Figures 1 and S2–S10 and Tables S1 and S2). The maximum depths varied between 98
and 248 cm below the land surface, and the sites reflect a variety of depositional conditions. For each core
we dug a pit down to the top of the permafrost and measured active layer depth (ALD). We extracted the
cores using a gas-powered Snow, Ice, and Permafrost Research Establishment (SIPRE) auger modified with
carbide cutting blades for frozen soil (Figure S11). The SIPRE can drill to a maximum depth of ~2 m, but
obstructing rocks typically limited the actual drilling depth at each site. We broke each core into smaller
samples, which we photographed, wrapped, labeled, and stored in a portable freezer (Figure S12). We
shipped the frozen cores to the U.S. Geological Survey (USGS) Research Laboratory in Boulder, Colorado
and stored them at �20°C until cutting, processing, and analysis.

We cut the cores in half lengthwise using a band saw thoroughly cleaned with methanol and 18 MegaOhm
deionized water and archived one half in airtight bags in a freezer for future analyses (Figures S13 and S14).
We then sliced the frozen cores into 1.5 cm segments for a total of 588 samples (Figure S15). We followed
standard techniques of trace metal sampling with laboratory technicians wearing Latex gloves at all times
(U.S. Geological Survey, 2015). Using a ceramic knife on a Teflon surface, we cut each frozen segment into

Figure 1. Locations of permafrost coring sites (black circles) and sites from other published studies (red circles) superimposed on a map of permafrost regions.
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two rectangular subsamples from the center of the segment, one for STHg and one for bulk density (BD). We
scraped off the outer fewmillimeters of the Hg subsample with the knife before measuring STHg (Figure S16).
We weighed andmeasured the dimensions of the larger subsample to determine BD (Soil Survey Staff, 2014).
We placed the STHg subsample in a preweighed, Hg-free jar, recorded the mass, and freeze-dried it
(Figure S17). We thoroughly cleaned a mortar and pestle with 18 MegaOhm deionized water, homogenized
the Hg subsample to a fine powder, and stored the powder in Hg-free glass vials (Figure S18).

We measured STHg, BD, soil organic carbon (SOC), and Δ14C and calculated the Hg to carbon ratio (RHgC)
(Table S3). Quality Assurance and Control accounted for more than 56% of all analyses (Texts S1–S3). We
split every tenth segment into duplicate subsamples (Figure S19). For the CF and EG cores, we analyzed
STHg at the USGS Mercury Research lab in Madison, Wisconsin using EPA Method 7473 (EPA Method
7473 (SW-846), 1998; USGS Mercury Research Lab (MRL), http://wi.water.usgs.gov/mercury-lab/analysis-
methods.html, 2013). For all other cores, we measured STHg using a Milestone Direct Mercury Analyzer-
80 (DMA-80) at the USGS Research Laboratory in Boulder, Colorado (Figure S20, Text S4, and Table S4).
For soil carbon dating, we give Δ14C concentration as the fraction Modern Δ14C and conventional radio-
carbon age (Text S5). We measured loss on ignition (LOI) for the second subsample as the loss of weight
of a dried sample ignited at 550°C for 5 h by a Muffle furnace (Soil Survey Staff, 2014). To estimate SOC,
we multiplied LOI by a carbon fraction of 0.493 (Anderson & Sarmiento, 1994). We used the standard
Redfield ratio of 0.493 based on the 117:14:1 C;N;P; ratio of marine biomass samples. We calculated
RHgC as the ratio of STHg to SOC for each sample (Bargagli et al., 2007).

To create maps of soil Hg, we multiplied maps of soil carbon by a representative RHgC. We used soil carbon
maps from the Northern Circumpolar Soil Carbon Database (NCSCD) at a spatial resolution of 0.5° latitude
and longitude (Hugelius, Tarnocai, et al., 2013; Hugelius et al., 2014). We calculated separate Hg maps for sev-
eral soil layers: 0–30 cm, 0–60 cm 0–100 cm, 0–300 cm, active layer, and permafrost. We assume 300 cm
represents the typical soil accumulation since the last glacial maximum to capture 90% of the carbon in
the near surface soils. The active layer Hg extends from the surface to ALD, and the permafrost Hg extends
from the ALD to 300 cm. We used simulated ALD from the Community Land Model version 3.4 (Koven et al.,
2015) and a linear fit of cumulative SOC with depth from the profiles in Harden et al. (2012). We ignore
localized deposits in yedoma and deltaic soils known to extend below 300 cm. We account for the fact that
permafrost occurs only under 50–90% of the land area in discontinuous zones and for the volume of soil
taken up by excess ground ice (Hugelius, Tarnocai, et al., 2013; Hugelius et al., 2014).

We used the median as the representative RHgC with uncertainty as the 25th to 75th percentiles. We use
quadrature to combine uncertainty of RHgC with the 14.5% uncertainty in soil carbon from the NCSCD.
We statistically evaluated the representativeness of the median RHgC by subdividing the data and determin-
ing if the median RHgC changes between sites, depths, and soil types. We regressed RHgC against

14C age to
evaluate the representativeness of the median RHgC over time. We evaluated the spatial representativeness
of our measurements by comparison with 11,000 published measurements. Less than 2% of published data
come from permafrost sites, so we included data from boreal and temperate sites (Table S5 and S6). We
included only sites with both SOC and STHg measurements to calculate RHgC. The published data included
extreme outliers indicative of modern Hg contamination that biased the statistics. Our samples stayed
frozen for thousands of years and represent preindustrial conditions, so to make a fair comparison, we
removed outliers exceeding the mean plus 2 times the standard deviation (73 STHg and 125 RHgC values).
This resulted in 11,000 published measurements of STHg, SOC, and RHgC from 4,926 different sites.

3. Results

We find a median STHg of 43 ± 30 ng Hg g soil�1 and a median representative RHgC of 1.6 ± 0.9 μg Hg g C�1

(Figure 2). For both STHg and RHgC, the median and mean values for our data match each other and those
from the published data within uncertainty. The published data show a higher mean RHgC because it has
11% or ~1,100 STHg values greater than 200 ng Hg g soil�1, compared to one sample in our data, indicating
local contamination by anthropogenic sources at some sites. Our STHg data showed a bimodal distribution
with a primary peak at 40 ng Hg g soil�1 and a weaker secondary peak at 100 ng Hg g soil�1 resulting from
data from four of the cores, indicating strong variability between sites. The published data also show
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variability between sites, but the secondary peak does not appear at all. Our data and the published data
both show a single dominant mode in RHgC, with 95.5% of the RHgC values falling between 0.0 and
5.0 μg Hg g C�1.

The median RHgC of 1.6 ± 0.9 μg Hg g C�1 appears representative of site, depth, soil type, and age. STHg
showed high variability between sites, but the median RHgC is insensitive to site (Figure S21). Comparing
our sites to maps of soil characteristics indicates the cores broadly represent ~69% of the soils found in
Alaska (Hugelius, Tarnocai, et al., 2013; Hugelius et al., 2014). RHgC does not change with soil type: mineral
and peat soils have roughly the same median RHgC. Although STHg and SOC both decrease with depth
(Figures S22 and S23), RHgC is constant with depth: the RHgC median for any 20 cm range of depths is
1.6 μg Hg g C�1 (Figures S24 and S25). Because age decreases exponentially with depth, SOC and STHg also
decrease with age. However, unlike STHg and SOC, RHgC, appears constant with age (Figures S26–S29).

Maps of soil Hg show great spatial variability reflecting different sedimentation histories (Figure 3). The rela-
tive uncertainty per pixel is 57%, which means there is a 95% probability that the actual value lies within
±57% of our estimated value. Soils with high carbon content and high sedimentation show high Hg mass,
such as the North Slope of Alaska and the Mackenzie River basin in Canada. Areas with little sedimentary
overburden and shallow soils such as the Rocky Mountains and the Canadian Shield in North America have
low SOC and Hg. Slow decay due to freezing temperatures coupled with high sedimentation rates has buried
substantial amounts of carbon and Hg over much of Siberia. The active layer depth (ALD) varies from 30 cm
near the Arctic coastline to 100 cm in the southern permafrost regions, so much of the buried carbon and the
Hg bound to it lies frozen and preserved in permafrost. Our 0–30 cm map agrees with a published 0–30 soil
Hg map in areas with little sedimentary overburden but shows much higher soil Hg in areas with high
sedimentation rates, particularly Siberia (Smith-Downey et al., 2010). A large pool of Hg in the active layer
leaching into Arctic Rivers might explain why the permafrost-dominated terrestrial environment is the
dominant source of Hg to the Arctic Ocean and why the Arctic Ocean is a net source of Hg to the Atlantic
and Pacific Oceans (Fisher et al., 2012; Schuster et al., 2011; Soerensen et al., 2016).

4. Discussion

Several atmospheric Hg sources unique to the northern high latitudes have significant spatial and temporal
variability to explain STHg variability within and between cores (Fitzgerald & Lamborg, 2003). Northern boreal
forest fires release Hg into the atmosphere leading to spatial variability in Hg deposition (Homann et al., 2015;
Rothenberg et al., 2010; Turetsky, et al., 2006). Spatial variations in temperature and moisture change
microbial respiration rates (Wickland et al., 2006). Peaks in atmospheric Hg during summer resulting from
atmospheric mixing with ozone enhance Hg deposition (Banic et al., 2003; Sonke & Heimbürger, 2012).
Springtime atmospheric Hg depletion after the polar sunrise may elevate Hg deposition to the high latitudes
(Berg et al., 2008; Fitzgerald et al., 2005; Lindberg et al., 2002). Although southeast Alaska contains geologic
Hg deposits (Gray et al., 2000), we see no evidence of terrestrial geologic Hg sources within Alaska (Eberl,
2004; Williams, 1962). Volcanic eruptions release Hg into the atmosphere, leading to variability in Hg deposi-
tion (Pirrone et al., 2010; Pyle & Mather, 2003; Schuster et al., 2002), but we saw little evidence of Hg

Median: 1.6±0.9 
Mean: 1.8±1.2

2.0±1.9
4.8±6.4

Here Published

Median:
Mean:

Here Published
43±30
62±35

20±10
36±37

Figure 2. Probability functions showing the fraction of values as a function of (a) STHg and (b) RHgC. Our data for
permafrost soils appear in black, and published data for mostly nonpermafrost soils appear in red.
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deposition from volcanic ash. These depositional processes are not
exclusive to the 13 coring sites chosen for this study but rather
inclusive to the high latitudes of the Northern Hemisphere.

Despite these processes leading to highly variable depositional environ-
ments, our STHgmeasurements appear consistent with similar measure-
ments in permafrost regions. Peat deposits in Tomsk Oblast, west Siberia
(Lyapina et al., 2009) show STHg values and vertical profiles similar to
ours. Rydberg et al. (2010) measured STHg of 40 ng Hg g soil�1 below
25 cm depth, close to our median value of 43 ng Hg g soil�1. STHg in
active layer soils along a ~970 kilometer north-south transect of Alaska
ranged from 100 ng Hg g soil�1 in the O horizon to 50 ng Hg g soil�1

in the A horizon (Wang et al., 2010). STHg ranged between 12 and
375 ng Hg g soil�1, and RHgC varied between 1 and 11.3 μg Hg g C�1

at a sub-Antarctic site in Tierra del Fuego (Peña-Rodríguez et al., 2014).

Moreover, our STHg measurements appear consistent with published
data for nonpermafrost soils (Figure 4). Most of the 11,000 published
data fall in the temperate midlatitudes, with 2088 in boreal forests and
only 67 points in permafrost regions. Here we show a curve fit of the
median STHg as a function of SOC with the 90% envelope defined as
the 5th to 95th percentiles (Figures S30–S32). Superimposing our data

Figure 3. Maps of Hg (mg Hg m�2) in Northern Hemisphere permafrost zones for four soil layers: 0–30 cm, 0–100 cm,
0–300 cm, and permafrost derived by multiplying maps of carbon from Hugelius, Tarnocai, et al. (2013) and Hugelius
et al. (2014) by the median RHgC. The permafrost map represents the Hg bound to frozen organic matter below the ALD
and above 300 cm depth. The relative uncertainty is 57% for all pixels.

Figure 4. STHg as a function of SOC for our data (red dots), themedian of the
published data (black line), and the 90% envelope of published data (grey
areas). For SOC < 10%, the median STHg for the published data increases
linearly with an R2 of 0.98. For SOC > 10%, the slope of the median
STHg drops and the relationship weakens with an R2 of 0.56. About 90% of
our data values fall within the expected envelope of the published data
(Figures S30–S32).
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indicates that 90% of our STHg measurements fall within the 90% envelope of the published data, with a
slight shift toward higher STHg.

As SOC increases, STHg appears to shift from a receptor-limited regime to a flux-limited regime (Figure 4). Hg
enters plants through the roots or by dry deposition from the atmosphere onto leaves (Obrist et al., 2017;
Windham-Myers et al., 2009), where it attaches to appropriate receptor sites in organic molecules in place
of nutrients such as iron or magnesium. For mineral soils with SOC< 10%, the number of receptor sites limit
the Hg plants can retain, and STHg increases strongly with SOC (R2 = 0.98). For organic soils with SOC> 10%,
receptor sites appear unlimited and the flux of Hg from the atmosphere limits the STHg. Since atmospheric
deposition is highly variable in space and time, the data become noisier and STHg appears nearly indepen-
dent of SOC. The two regimes might explain why, like previously published data (Bargagli et al., 2007;
Erickson, 2014), some sites show statistically significant correlations between STHg and SOC, whereas others
did not. Sites with low SOC in the receptor-limited regime tended to have statistically significant correlations,
while sites with organic soils in the flux-limited regime did not.

We estimate that soils in permafrost regions contain an estimated 1,656 ± 962 Gg Hg, of which half or
793 ± 461 Gg Hg is frozen in permafrost (Figure 5 and Table 1). We estimate the total mass of Hg in each layer
by multiplying each pixel by the grid cell area and summing across the permafrost domain. The average of
nine previously published estimates of global soil Hg is 454 ± 321, with a range from 235 to 1,000 Gg Hg
(Table S7). However, these estimates generally limit soil depth to 30 cm, indicating our 0–30 cm soil Hg for
permafrost regions (347 ± 196 Gg Hg; Table 1) rivals the global soil Hg in previous estimates. These studies

leverage the known link between microbial decay and Hg release and
often rely on biogeochemical models that tend to underestimate soil
Hg in permafrost regions. To improve Hg estimates in permafrost soils,
these models should account for the large drop in microbial activity
under freezing conditions and sedimentation processes that bury and
freeze organic matter into the permafrost. Our results indicate the active
layer alone represents the largest Hg reservoir on the planet. The active
layer and permafrost together contain nearly twice as much Hg as all
other soils, the ocean, and the atmosphere combined.

Hg in permafrost soils represents an environmental risk as permafrost
continues to thaw in the future. The turnover time associated with the

Atmosphere
5

Ocean
353

All Other Soils
454

Marine 
Evasion

34

Marine 
Deposition

3

Terrestrial 
Deposition

Terrestrial 
Emissions

Vegetation
10

2

Anthropogenic 
Emissions

2

0.4

0.2

Riverine Flux

BurialPermafrost
793

Active Layer
863

Figure 5. An updated schematic of the modern global Hg cycle with major reservoirs in white (Gg Hg) and fluxes in black
(Gg Hg yr�1). Adapted from Amos et al. (2013) with the soil reservoir shown as an average of previously published
estimates (Table S7).

Table 1
Total Soil Carbon and Hg in Northern Hemisphere Permafrost Regions

Depth range (cm) Soil carbon (Pg) Soil Hg (Gg Hg)

0–30 217 ± 12 347 ± 196
0–60 333 ± 18 532 ± 301
0–100 472 ± 27 755 ± 427
0–200 827 ± 108 1323 ± 764
0–300 1035 ± 150 1656 ± 962
Permafrost 496 ± 72 793 ± 461
Active layer 539 ± 78 863 ± 501
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microbial decay of frozen organic matter is ~14,000 years (Figure S28), making the Hg locked in permafrost
effectively stable on human time scales. However, projections indicate a 30–99% reduction in near surface
permafrost by 2100, and, once thawed, the turnover time for microbial decay drops to ~70 years (Koven et al.,
2013; Schaefer et al., 2011). This makes the reservoir of Hg in permafrost soils vulnerable to release over the
next century, with unknown consequences to the environment.

5. Summary

Wemeasured a median STHg of 43 ± 30 ng Hg g soil�1 and a median RHgC of 1.6 ± 0.9 μg Hg g C�1 based on
588 samples from 13 soil permafrost cores from the interior and the North Slope of Alaska. These values
appear consistent with published results of Hg concentrations for tundra soils and 11,000 nonpermafrost soil
measurements from 4,926 different sites in North America and Eurasia. In a novel approach, we estimate that
the entire Northern Hemisphere permafrost region contains 1,656 ± 962 Gg Hg, of which 793 ± 461 Gg Hg is
frozen in permafrost. Northern Hemisphere permafrost soils contain nearly twice as much Hg as all other soils,
the ocean, and the atmosphere combined, indicating a need to reevaluate the role of the Arctic regions in the
global Hg cycle. This Hg is vulnerable to release as permafrost thaws over the next century.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by
the U.S. Government.

References
Amos, H. M., Jacob, D. J., Kocman, D., Horowitz, H. M., Zhang, Y., Dutkiewicz, S., … Sunderland, E. M. (2014). Global biogeochemical

implications of mercury discharges from rivers and sediment burial. Environmental Science & Technology, 48(16), 9514–9522. https://doi.
org/10.1021/es502134t

Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. (2013). Legacy impacts of all-time anthropogenic emissions on the global mercury
cycle. Global Biogeochemical Cycles, 27, 410–421. https://doi.org/10.1002/gbc.20040

Amos, H. M., Sonke, J. E., Obrist, D., Robins, N., Hagan, N., Horowitz, H. M.,… Sunderland, E. M. (2015). Observational andmodeling constraints
on global anthropogenic enrichment of mercury. Environmental Science & Technology, 49(7), 4036–4047. https://doi.org/10.1021/
es5058665

Anderson, L. A., & Sarmiento, J. L. (1994). Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochemical
Cycles, 8(1), 65–80. https://doi.org/10.1029/93GB03318

Banic, C. M., Beauchamp, S. T., Tordon, R. J., Schroeder, W. H., Steffen, A., Anlauf, K. A., & Wong, H. K. T. (2003). Vertical distribution of gaseous
elemental mercury in Canada. Journal of Geophysical Research, 108(D9), 4264. https://doi.org/10.1029/2002JD002116

Bargagli, R., Monaci, F., & Bucci, C. (2007). Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biology & Biochemistry,
39(1), 352–360. https://doi.org/10.1016/j.soilbio.2006.08.005

Berg, T., Aspmo, K., & Steinnes, E. (2008). Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its
possible influence on Hg deposition. Geophysical Research Letters, 35, L09802. https://doi.org/10.1029/2008GL033586

Dunlap, K. L., Reynolds, A. J., Bowers, P. M., & Duffy, L. K. (2007). Hair analysis in sled dogs (Canis lupus familiaris) illustrates a linkage of mercury
exposure along the Yukon River with human subsistence food systems. Science of the Total Environment, 385(1-3), 80–85. https://doi.org/
10.1016/j.scitotenv.2007.07.002

Eberl, D. D. (2004). Quantitative mineralogy of the Yukon River system: Variations with reach and season, and sediment source unmixing.
American Mineralogist, 89(11-12), 1784–1794. https://doi.org/10.2138/am-2004-11-1225

EPA Method 7473 (SW-846) (1998). Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption
spectrophotometry, Revision 0.

Erickson, L. (2014). Mercury dynamics in sub-arctic lake sediments across a methane ebullition gradient, Thesis, Geology Gustavus Adolphus
College, pp. 30.

Fisher, J. A., Jacob, D. J., Soerensen, A. L., Amos, H. M., Steffen, A., & Sunderland, E. M. (2012). Riverine source of Arctic Ocean mercury inferred
from atmospheric observations. Nature Geoscience, 5(7), 499–504. https://doi.org/10.1038/NGEO1478

Fitzgerald, W. F., Engstrom, D. R., Lamborg, Tseng, C.-M., Balcom, P. H., & Hammerschmidt, C. R. (2005). Modern and historic atmospheric
mercury fluxes in northern Alaska: Global sources and Arctic depletion. Environmental Science & Technology, 39(2), 557–568. https://doi.
org/10.1021/es049128x

Fitzgerald, W. F., & Lamborg, C. H. (2003). Geochemistry of mercury in the environment. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on
geochemistry (Vol. 9, pp. 107–148). Amsterdam: Elsevier. https://doi.org/10.1016/B0-08-043751-6/09048%E2%80%934

Gallant, A. L., Whittier, T. R., Larsen, D. P., Omernik, J. M., & Hughes, R. M. (1989). Regionalization as a tool for managing environmental
resources. EPA/600/3–89/060. US Environmental Protection Agency, Environmental Research Laboratory, Corvallis, Oregon, 152 pp.

Gray, J. E., Theodorakos, P. M., Bailey, E. A., & Turner, R. R. (2000). Distribution, speciation, and transport of mercury instream-sediment,
stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. The Science of the Total Environment,
260(1-3), 21–33. https://doi.org/10.1016/S0048-9697(00)00539-8

Hararuk, O., Obrist, D., & Luo, Y. (2013). Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools.
Biogeosciences, 10(4), 2393–2407. https://doi.org/10.5194/bg-10-2393-2013

Harden, J. W., Koven, C. D., Ping, C. L., Hugelius, G., McGuire, A. D., Camill, P.,… Grosse, G. (2012). Field information links permafrost carbon to
physical vulnerabilities of thawing. Geophysical Research Letters, 39, L15704. https://doi.org/10.1029/2012GL051958

Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurgerov, M. B., Fastie, C. L., … Yoshikawa, K. (2005). Evidence and implications of
recent climate change in northern Alaska and other Arctic regions. Climatic Change, 72(3), 251–298. https://doi.org/10.1007/
s10584-005-5352-2

Geophysical Research Letters 10.1002/2017GL075571

SCHUSTER ET AL. PERMAFROST STORES A GLOBALLY SIGNIFICANT AMOUNT OF MERCURY 1469

Acknowledgments
The authors thank John Borg, John
Crawford, and Bob Eaganhouse for dril-
ling assistance. This article is dedicated
to George R. Aiken, whose 40 year
career as a U.S. Geological Survey
scientist was cut short with his death
from cancer in 2016. Without George’s
foundational scientific contributions to
our knowledge of the world’s organic
matter, much of what we know about
organic matter would not have been
possible, including the findings from
this study. George is missed by too
many friends and family to count.
However, his legacy as “Dr DOC”will live
on in all of us. Supporting Information
(SI) are available at http://agupubs.onli-
nelibrary.wiley.com/hub/journal/
10.1002/(ISSN)1944-8007/. Data gener-
ated for this study are available at
https://www.sciencebase.gov/catalog/
domain repository and GeoPass:
https://geopass.iedadata.org/josso/.
Reprints and permission information are
available at https://grl-submit.agu.org/.
The authors declare no competing
financial interests. Readers are welcome
to comment on the online version of
this paper. Correspondence and request
for materials should be addressed to
pschuste@usgs.gov (https://orcid.org/
0000-0002-8314-1372) or kevin.schae-
fer@nsidc.org. Funding for this research
came from the USGS Toxic Substances
Hydrology Program (TSHP) and the
USGS NASQAN/NAWQA and CEN
Programs; NASA grants NNX10AR63G,
NNX06AE65G, NNX17AC59A, and
NNX13AM25G; NOAA grant
NA09OAR4310063; CUHK Direct grant
4053206; the National Natural Science
Foundation of China (91325202); the
National Key Scientific Research Project
(2013CBA01802) by the Ministry of
Science and Technology of China; and
National Science Foundation grant
ARC1204167. G.H. received funding
from the EU H2020 Nunataryuk project
(773421). P. S. devised and supervised
the study, drilled four cores, and super-
vised all laboratory work. K. M. S. super-
vised the collection of the other cores
and analyzed data. D. P. K., R. G. S., K. P.
W., and G. R. A. provided advice and
guidance during writing. R. C. A.
provided statistical support. J. F. D.
analyzed and quality assured data from
two cores. J. D. G. and C. W. processed
all the cores. G. H. led map
development. E. J. assisted with the
writing process and references. N. H. M.
contributed to map development. A. G.,
E. J., L. L., T. S., and T. Z. drilled one or
more cores. D. A. R. wrote the standard
operation procedure for the DMA-80,
maintained the instrument, and pro-
cessed and quality assured 85% of the
data.

https://doi.org/10.1021/es502134t
https://doi.org/10.1021/es502134t
https://doi.org/10.1002/gbc.20040
https://doi.org/10.1021/es5058665
https://doi.org/10.1021/es5058665
https://doi.org/10.1029/93GB03318
https://doi.org/10.1029/2002JD002116
https://doi.org/10.1016/j.soilbio.2006.08.005
https://doi.org/10.1029/2008GL033586
https://doi.org/10.1016/j.scitotenv.2007.07.002
https://doi.org/10.1016/j.scitotenv.2007.07.002
https://doi.org/10.2138/am-2004-11-1225
https://doi.org/10.1038/NGEO1478
https://doi.org/10.1021/es049128x
https://doi.org/10.1021/es049128x
https://doi.org/10.1016/B0-08-043751-6/09048%E2%80%934
https://doi.org/10.1016/S0048-9697(00)00539-8
https://doi.org/10.5194/bg-10-2393-2013
https://doi.org/10.1029/2012GL051958
https://doi.org/10.1007/s10584-005-5352-2
https://doi.org/10.1007/s10584-005-5352-2
http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1944-8007/
http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1944-8007/
http://agupubs.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1944-8007/
https://www.sciencebase.gov/catalog/domain
https://www.sciencebase.gov/catalog/domain
https://geopass.iedadata.org/josso/
https://grl-submit.agu.org/
mailto:pschuste@usgs.gov
https://orcid.org/0000-0002-8314-1372
https://orcid.org/0000-0002-8314-1372
mailto:kevin.schaefer@nsidc.org
mailto:kevin.schaefer@nsidc.org


Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao1, J., Yang, X., Talbot, R., & Slemr, F. (2010). Global atmospheric model for mercury
including oxidation by bromine atoms. Atmospheric Chemistry and Physics, 10(24), 12,037–12,057. https://doi.org/10.5194/
acp-10-12037-2010

Homann, P. S., Garbyshire, R. L., Bormann, B. T., & Morrissette, B. A. (2015). Forest structure affects soil mercury losses in the presence and
absence of wildfire. Environmental Science & Technology, 49(21), 12,714–12,722. https://doi.org/10.1021/acs.est.5b03355

Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., … Yu, Z. (2013). A new data set for estimating organic carbon
storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 5(2), 393–402. https://doi.org/
10.5194/essd-5-393-2013

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L.,… Kuhry, P. (2014). Estimated stocks of circumpolar permafrost
carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573–6593. https://doi.org/10.5194/
bg-11-6573-2014

Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., & Swanson, D. K. (2013). The northern circumpolar soil carbon database: Spatially
distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 3–13.
https://doi.org/10.5194/essd-5-3-2013

Jiang, S., Liu, X., & Chen, Q. (2011). Distribution of total mercury and methylmercury in lake sediments in Arctic Ny-Ålesund. Chemosphere,
83(8), 1108–1116. https://doi.org/10.1016/j.chemosphere.2011.01.031

Jonsson, S., Andersson, A., Nilsson, M. B., Skyllberg, U., Lundberg, E., Schaefer, J. K.,… Björn, E. (2017). Terrestrial discharges mediate trophic
shifts and enhance methylmercury accumulation in estuarine biota. Science Advances, 3(1), e1601239. https://doi.org/10.1126/
sciadv.1601239

Kang, S., Huang, J., Wang, F., Zhang, Q., Zhang, Y., Li, C., … Guo, J. Atmospheric mercury depositional chronology reconstructed from lake
sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 50(6), 2859–2869. https://doi.org/
10.1021/acs.est.5b04172

Klaminder, J., Bindler, R., Rydberg, J., & Renberg, I. (2008). Is there a chronological record of atmospheric mercury and lead deposition
preserved in the mor layer (O-horizon) of boreal forest soils? Geochimica et Cosmochimica Acta, 72(3), 703–712. https://doi.org/10.1016/
j.gca.2007.10.030

Kolka, R. K., Sturtevant, B. R., Miesel, J. R., Singh, A., Wolter, P. T., Fraver, S.,… Townsend, P. A. (2017). Emissions of forest floor and mineral soil
carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek fire in the boreal forest of northern
Minnesota. International Journal of Wildland Fire, 26(4), 296–305. https://doi.org/10.1071/WF16128

Koven, C. D., Riley, W. J., & Stern, A. (2013). Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth
system models. Journal of Climate, 26(6), 1877–1900. https://doi.org/10.1175/JCLI-D-12-00228.1

Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S., Stevens, R. K., … Richter, A. (2002). Mercury in the Arctic troposphere at polar
sunrise. Environmental Science & Technology, 36(6), 1245–1256. https://doi.org/10.1021/es0111941

Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., … Timm, B. (1991). Mercury in the Swedish
environment—Recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55, 11–13.

Lyapina, E. E., Golovatskaya, E. A., & Ippolitov, I. I. (2009). Mercury concentration in natural objects of West Siberia. Contemporary Problems of
Ecology, 2(1), 1–5. https://doi.org/10.1134/S1995425509010019

Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg, C. H., Soerensen, A. L., & Sunderland, E. M. (2012). Mercury
biogeochemical cycling in the ocean and policy implications. Environmental Research, 119, 101–117. https://doi.org/10.1016/
j.envres.2012.03.013

Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J.,… Helmig, D. (2017). Tundra uptake of atmospheric elemental mercury
drives Arctic mercury pollution. Nature, 547(7662), 201–204. https://doi.org/10.1038/nature22997

Pannu, R., Siciliano, S. D., & O’Driscoll, N. J. (2014). Quantifying the effects of soil temperature, moisture and sterilization on elemental
mercury formation in boreal soils. Environmental Pollution, 193, 138–146. https://doi.org/10.1016/j.envpol.2014.06.023

Peña-Rodríguez, S., Pontevedra-Pombal, X., Gayoso, E. G. R., Moretto, A., Mansilla, R., Cutillas-Barreiro, L., … Nóvoa-Muñoz, J. C. (2014).
Mercury distribution in a toposequence of sub-Antarctic forest soils of Tierra del 2 Fuego (Argentina) as consequence of the prevailing soil
processes. Geoderma, 232-234, 130–140. https://doi.org/10.1016/j.geoderma.2014.04.040

Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., … Telmer, K. (2010). Global mercury emissions to the
atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964. https://doi.org/10.5194/
acp-10-5951-2010

Podar, M., Gilmour, C., Brandt, C. C., Soren, A., Brown, S. D., Crable, B. R., … Elias, D. A. (2015). Global prevalence and distribution of genes
and microorganisms involved in mercury methylation. Science Advances, 1(9), e1500675–e1500612. https://doi.org/10.1126/
sciadv.1500675.

Pyle, D. M., & Mather, T. A. (2003). The importance of volcanic emissions for the global atmospheric mercury cycle. Atmospheric Environment,
37(36), 5115–5124. https://doi.org/10.1016/j.atmosenv.2003.07.011

Romanovsky, V., Grosse, G., & Marchenko, S. (2008). Past, present and future of permafrost in a changing world. Geological Society of America,
40(6), 397.

Rothenberg, S. E., Kirby, M. E., Bird, B. W., DeRose, M. B., Lin, C. C., Feng, X., … Jay, J. A. (2010). The impact of over 100 years of wildfires on
mercury levels and accumulation rates in two lakes in southern California, USA. Environment and Earth Science, 60(5), 993–1005. https://
doi.org/10.1007/s12665-009-0238-7

Rydberg, J., Klaminder, J., Rosén, P., & Bindler, R. (2010). Climate driven release of carbon and mercury from permafrost mires increases
mercury loading to sub-arctic lakes. Science of the Total Environment, 408(20), 4778–4783. https://doi.org/10.1016/
j.scitotenv.2010.06.056

Schaefer, K., & Jafarov, E. (2016). A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences, 13(7),
1991–2001. https://doi.org/10.5194/bg-13-1991-2016

Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., & Witt, R. (2014). The impact of the permafrost carbon feedback on global climate.
Environmental Research Letters, 9(8), 085003. https://doi.org/10.1088/1748-9326/9/8/085003

Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., DeWild, J. F.,… Abbott, M. L. (2002). Atmospheric mercury deposition
during the last 270 years: A glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology, 36(11),
2303–2310. https://doi.org/10.1021/es0157503

Schuster, P. F., Striegl, R. G., Aiken, G. R., Krabbenhoft, D. P., DeWild, J. F., Butler, K.,… Dornblaser, M. (2011). Mercury export from the Yukon
River basin and potential response to a changing climate. Environmental Science and Technology, 45(21), 9262–9267. https://doi.org/
10.1021/es202068b

Geophysical Research Letters 10.1002/2017GL075571

SCHUSTER ET AL. PERMAFROST STORES A GLOBALLY SIGNIFICANT AMOUNT OF MERCURY 1470

https://doi.org/10.5194/acp-10-12037-2010
https://doi.org/10.5194/acp-10-12037-2010
https://doi.org/10.1021/acs.est.5b03355
https://doi.org/10.5194/essd-5-393-2013
https://doi.org/10.5194/essd-5-393-2013
https://doi.org/10.5194/bg-11-6573-2014
https://doi.org/10.5194/bg-11-6573-2014
https://doi.org/10.5194/essd-5-3-2013
https://doi.org/10.1016/j.chemosphere.2011.01.031
https://doi.org/10.1126/sciadv.1601239
https://doi.org/10.1126/sciadv.1601239
https://doi.org/10.1021/acs.est.5b04172
https://doi.org/10.1021/acs.est.5b04172
https://doi.org/10.1016/j.gca.2007.10.030
https://doi.org/10.1016/j.gca.2007.10.030
https://doi.org/10.1071/WF16128
https://doi.org/10.1175/JCLI-D-12-00228.1
https://doi.org/10.1021/es0111941
https://doi.org/10.1134/S1995425509010019
https://doi.org/10.1016/j.envres.2012.03.013
https://doi.org/10.1016/j.envres.2012.03.013
https://doi.org/10.1038/nature22997
https://doi.org/10.1016/j.envpol.2014.06.023
https://doi.org/10.1016/j.geoderma.2014.04.040
https://doi.org/10.5194/acp-10-5951-2010
https://doi.org/10.5194/acp-10-5951-2010
https://doi.org/10.1126/sciadv.1500675
https://doi.org/10.1126/sciadv.1500675
https://doi.org/10.1016/j.atmosenv.2003.07.011
https://doi.org/10.1007/s12665-009-0238-7
https://doi.org/10.1007/s12665-009-0238-7
https://doi.org/10.1016/j.scitotenv.2010.06.056
https://doi.org/10.1016/j.scitotenv.2010.06.056
https://doi.org/10.5194/bg-13-1991-2016
https://doi.org/10.1088/1748-9326/9/8/085003
https://doi.org/10.1021/es0157503
https://doi.org/10.1021/es202068b
https://doi.org/10.1021/es202068b


Skogerboe, R. K., & Grant, C. L. (1970). Comments on the definition of the terms sensitivity and detection limit. Spectroscopy Letters, 3(8-9),
215–220. https://doi.org/10.1080/00387017008081956

Skyllberg, U., Qian, J., Frech, W., Kang, X., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil,
soil solution and stream of a boreal forest catchment. Biogeochemistry, 64(1), 53–76. https://doi.org/10.1023/A:1024904502633

Smith, D. B., Cannon, W. F., Woodruff, L. G., Garrett, R. G., Klassen, R., Kilburn, J. E.,… Jean, M. (2005). Major- and trace-element concentrations
in soils from two continental-scale transects of the United States and Canada. U.S. Geological Survey Open-File Report 2005–1253, 20 p.
Retrieved from http://pubs.usgs.gov/of/2005/1253/

Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., & Ellefsen, K. J. (2014). Geochemical and mineralogical maps for soils of the
conterminous United States. U.S. Geological Survey Open-File Report 2014–1082, pp. 386. https://doi.org/10.3133/ofr20141082

Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Mallard, M., Clow, G. D.,… Throop, J. (2010). Thermal state of permafrost in North
America: A contribution to the International Polar Year. Permafrost and Periglacial Processes, 21(2), 117–135. https://doi.org/10.1002/
ppp.690

Smith-Downey, N. V., Sunderland, E. M., & Jacob, D. J. (2010). Anthropogenic impacts on global storage and emissions of mercury from
terrestrial soils: Insights from a new global model. Journal of Geophysical Research, 115, G03008. https://doi.org/10.1029/2009JG001124

Soerensen, A. L., Jacob, D. J., Schartup, A. T., Fisher, J. A., Lehnherr, I., St. Louis, V. L., … Sunderland, E. M. (2016). A mass budget for mercury
and methylmercury in the Arctic Ocean. Global Biogeochemical Cycles, 30, 560–575. https://doi.org/10.1002/2015GB005280

Soil Survey Staff (2014). Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil
Survey Staff (ed.). U.S. Department of Agriculture, Natural Resources Conservation Service.

Sonke, J. E., & Heimbürger, L. E. (2012). Mercury in flux. Nature Geoscience, 5(7), 447–448. https://doi.org/10.1038/ngeo1508
Turetsky, M. R., Harden, J. W., Friedli, H. R., Flannigan, M., Payne, N., Crock, J., & Radke, L. (2006). Wildfires threaten mercury stocks in northern

soils. Geophysical Research Letters, 33, L16403. https://doi.org/10.1029/2005GL025595
U.S. Geological Survey (2015). National field manual for the collection of water-quality data. U.S. Geological Survey Techniques of

Water-Resources Investigations, book 9, Chaps. A1-A10, variously dated. Retrieved from http://pubs.water.usgs.gov/twri9A. http://water.
usgs.gov/owq/FieldManual/chapter4/html/Ch4_contents.html

Wang, B., Eberl, D., Gough, L., & Frohbieter, D. (2010). Mercury in soils along a N/S transect in Alaska. In P. Birkle, & I. Torres-Alvarado (Eds.),
Proceedings of the 13th international symposium on water-rock interaction, Guanajuato, Mexico, 16–20 August 2010. Water–Rock
Interaction. (pp. 311–314).

Wickland, K. P., Krabbenhoft, D. P., & Olund, S. (2006). Evidence for a link between soil respiration and mercury emission from organic soils,
Eighth International Conference on Mercury as a Global Pollutant, August 6-11.

Williams, J. R. (1962). Geologic reconnaissance of the Yukon Flats district, Alaska. Geological Survey Bulletin, 1111-H, 289–331.
Windham-Myers, L., Marvin-Dipasquale, M., Krabbenhoft, D. P., Agee, J. L., Cox, M. H., Heredia-Middleton, P., … Kakouros, E. (2009).

Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment. Journal of
Geophysical Research, 114, G00C5. https://doi.org/10.1029/2008JG000815

Zhang, L., Qian, J. L., & Planas, D. (1995). Mercury concentration in tree rings of black spruce (Picea mariana Mill. B.S.P.) in boreal Quebec,
Canada. Water, Air, and Soil Pollution, 81(1-2), 163–173. https://doi.org/10.1007/BF00477263

Zyrin, N. G., Zvonarev, B. A., & Kim, N. (1978). Mercury in the brown forest soils of Dagestan and the northern Osetiya. Moscow University Soil
Science Bulletin, 12, 22–26.

Zyrin, N. G., Zvonarev, B. A., Sadovnikova, L. K., & Voronova, N. I. (1981). Distribution of mercury in soils of the north Ossetian Plains. Soviet Soil
Science, 13, 44–52.

Erratum

In the originally published version of this article, there was a error in Figure 3 and its legend: (μg Hg m�2)
incorrectly appeared in place of the correct expression (mg Hg m�2). These errors have been corrected,
and the present version may be considered the authoritative version of record.
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